科技网

当前位置: 首页 >新闻

基于Nios的单点自适应控制器设计研究

新闻
来源: 作者: 2018-10-28 12:11:18

基于NiosⅡ的单点自适应控制器设计研究

导读:

为了提高道路交叉口通行能力,设计了一种单点交叉口自适应控制系统。系统采用SOPC方案,利用具有NiosⅡ软核的FPGA芯片设计了控制器的硬件,井利用遗传算法建立了信号配时优化模型、VHDL语言进行了遗传算法的硬件化、C语言编写了单点自适应控制器的程序。

为了提高道路交叉口通行能力,设计了一种单点交叉口自适应控制系统。系统采用SOPC方案,利用具有NiosⅡ软核的FPGA芯片设计了控制器的硬件,井利用遗传算法建立了信号配时优化模型、VHDL语言进行了遗传算法的硬件化、C语言编写了单点自适应控制器的程序。以成都市温江区南熏-光华大道路口的实测数据为例,进行软硬件系统联调的仿真实验,获得了交叉路口的信号配时优化方案。仿真结果表明,通过采用优化的方案进行交叉口信号配时后,各进口的车辆排队为零。验证了基于NiosⅡ单点自适应控制器的设计是有效的。  目前,解决城市交通拥堵,提高区域效益的重要手段之一是采用城市交通控制系统。单点交叉口控制是交通信号控制系统的最小单元,也是干线交叉口交通信息协调控制和区域交通信号控制系统的基础。单点交叉口的式自适应控制能根据前端检测器得到的实时交通信息,自动对交通信号控制的关键参数进行调整,以达到改善交通通行状况的目的,该方式将成为信号控制研究的主流。现代电子系统设计的主要方向之一是采用SOPC(System on a Programmable Chip)实现,SOPC技术的实现方式有3种,其中一种是用含有NiosⅡ软核的FPGA芯片实现。因此,本文对基于NiosⅡ的单点自适应控制器设计开展了研究。  1 单点自适应控制研究  单交叉路口信号配时方案的基本内容是信号相位方案和信号基本控制参数,本文侧重于对信号相位方案进行优化。  1.1 自适应信号机控制策略  本文用交叉口饱和度s作为选择控制策略的参数,将s分为(0,0.8),[0.8,0.9),[0.9,),3个区间,制定本自适应信号机的控制策略。  当车辆检测器系统出现故障时执行固定周期信号控制。若交叉口饱和度s的值为(0,0.8)就执行感应控制。若交叉口饱和度s的值为[0.8,0.9),就执行单点的实时自适应控制。若交叉口饱和度s为[0.9,)时,交叉口已处于饱和,应改善交叉口几何条件及交通条件。  1.2 系统功能分析与整体设计  设计的信号机控制器模块是交叉口信号灯控制系统的控制核心,其将控制信号灯控制及驱动模块、人机接口模块、通信模块、交通数据采集模块和数据存储模块。  1.3 车辆检测器安装及作用  设计在一个交叉路口的每个进口车道安装基于电磁感应原理的车辆检测设备。当有车经过环形地感线圈时,线圈的磁通量会发生变化,车辆检测器将磁通量变化转化为表示线圈上方有车存在或通过的开关信号。每条进口车道埋设两个线圈,一个在停车线后100 m处,称作上游线圈。另一个在停车线前面2~4 m处,称作下游线圈。通过该方式可采集到交通流量、车辆的平均到达率和离开率等交通数据。  由上游车辆检测器得到的车辆数可计算出一个信号周期内的车辆平均到达率,而从下游车辆检测器得到的车辆数可计算出一个信号周期内的车辆平均离开率。

12345下一页>

防火套管
桃树苗
挖沙船浮筒

相关推荐